RAMAKRISHNA MISSION VIDYAMANDIRA

(Residential Autonomous College affiliated to University of Calcutta)

B.A./B.Sc. FOURTH SEMESTER EXAMINATION, MAY 2023

SECOND YEAR [BATCH 2021-24]

Date : 27/05/2023 Time : 11 am - 1 pm PHYSICS [HONOURS] Paper : CC10

Full Marks: 50

Answer any five questions:		[5×10]
1. a)	Consider the scattering of photon by an electron initially at rest. Show that the change in	
	wavelength is equal to $\frac{h}{m_e c} (1 - \cos \theta)$, where θ is the scattering angle, (other symbols have	
	their usual meaning).	
b)	Discuss the appearance of two peaks in the scattered spectra. Show that the de-Broglie wavelength of an electron is equal to its Compton wavelength when	(4+1)
	its speed is $c/\sqrt{2}$.	(2)
c)	An electron has a de-Broglie wavelength of 0.15 \AA . Compute the phase and group velocities of that wave.	(3)
2. Starting with $(\hat{X}) = \int \psi *(x,t) \hat{X} \psi(x,t) dx$		
a) b)	Write the time dependent Schrodinger equation. Using this show that	(2) (4)
	$\frac{d(\hat{X})}{dt} = \int \psi * \frac{i}{h} (\hat{H}\hat{X} - \hat{X}\hat{H}) \psi dx$	
c)	Given $\hat{H} = \frac{\hat{P}^2}{2m} + V(\hat{X})$, find $[\hat{H}, \hat{X}]$.	(2)
d)	Using this show $\frac{d(\hat{X})}{dt} = \frac{1}{m} \int \psi *(x,t) \frac{d\psi(x,t)}{dx} dx$	(2)
3. a)	Show that the momentum operator $\hat{P} = -i\hbar \frac{d}{dx}$ is Hermitian.	(4)
b)	Given	
	$S_z = \frac{\hbar}{2} \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$	
	$\left \uparrow\right\rangle = \begin{bmatrix} 1\\ 0 \end{bmatrix}$	
	$\left \downarrow\right\rangle = \begin{bmatrix} 0\\1 \end{bmatrix}$	
	$ \psi\rangle = a \uparrow\rangle + b \downarrow\rangle$	
	Find $\langle S_z \rangle, \langle S_z^2 \rangle, \langle \Delta S_z \rangle$.	(2+2+2)

4. Two photons are entangled. One photon is with Virat (*V*) and another photon is with Gautam (*G*). Consider the entangled state $|\psi\rangle = \frac{1}{\sqrt{2}} \left(|\uparrow\rangle_{V} |\downarrow\rangle_{G} + |\downarrow\rangle_{V} |\uparrow\rangle_{G} \right)$ where $|\uparrow\rangle, |\downarrow\rangle$ are eigenstates of S_{z} as mentioned in problem 3.

- a) Virat measures the spin of photon and finds it to be $|\uparrow\rangle_{U}$. Then Gautam measures the spin of the photon with him. What are the possible outcome(s)?
- b) Are the photons still entangles after measurement?
- c) Again start with state $|\psi\rangle$. Now Gautam measures the spin of the photon in $|+\rangle, |-\rangle$ basis and finds to be $|-\rangle_{c}$. Then what is the state of the spin of the photon with Virat?
- 5. a) Consider the energy level diagram (as shown in the figure below) of a typical three level ruby laser system with 1.6×10^{19} chromium ions per cubic centimeter. All the atoms by the 0.4 μ m radiation decay rapidly to level E_2 , which has lifetime $\tau = 3$ ms. Find the minimum pump power required (per cubic centimeter) to bring the system zero gain.

- b) Find the ratio of the rates of stimulated and spontaneous emissions at $T=10^3$ K for the visible radiation frequency 5×10^{14} Hz and microwave frequency 10^9 Hz. Comment on the result.
- Establish the relation between Einstein's A, B coefficients and hence comment on the c) incoherency observed in ordinary light.
- A radioactive element X decays to Y, which in turn decays to a stable element Z. The decay 6. a) constant from X to Y is λ_1 and λ_2 . At the beginning with, there only N₀ atoms of X. At short times (t << 1/ λ_1 and as well as 1/ λ_2) find the number of Z.
 - b) The Mass of hydrogen atom and of neutron are 1.008142 u and 1.008982 u. Calculate binding energy per nucleon and packing fraction of O^{16} nucleus. (2)
 - c) Mass of He nucleus, proton, and neutron in amu are 4.0026, 1.007895 and 1.008665. Find the energy required to knock out nucleon from He nucleus.
 - Discuss the law of successive disintegration in the case of following transformation. d)

Where λ_1 and λ_2 are disintegration constant.

- Which isobars of A=75 does the liquid drop model suggest to be the most stable nucleus? (3) 7. a) Establish the relation A \approx 2Z for light light nuclei using semiempirical mass formula. Given; b) $a_c = 0.71 \text{ MeV}, a_n = 22.7 \text{ MeV}, M(^1H_1) = 1.0078 \text{ u}, M(n) = 1.0086 \text{ u}.$ (3)Explain the shell model which predicts magic number. c) (4) $_{28}Ni^{64}$ and $_{29}Cu^{64}$ have atomic masses 63.9280 u and 63.9298 u respectively. Which of them 8. a)
 - shows β activity and of which type? Justify your answer. Given that $2m_{\rho} = 0.0011 \text{ u.}$ (3)
 - b) $_{90}Th^{232} \alpha$ decays to its first daughter $_{88}Rs^{228}$. It is observed that a very thin foil containing 1 gm of $_{90}Th^{232}$ emits α -particles from this at a decay rate of 4100/sec. Use this data to calculate the half life of ${}_{90}Th^{232}$. Also calculate the mean life. (3+1)
 - c) Explain the phenomenon of Pair Production.

(6)

(2)

(2)

(3)

(2)

(4+1)

(3)

(2)

(3)

(3)